Stability mosaics in a forced Brusselator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation and Stability Analyses for a Coupled Brusselator Model

This paper addresses the dynamic behaviour of a chemical oscillator arising from the series coupling of two Brusselators. Of particular interest is the study of the associated Hopf bifurcation and double-Hopf bifurcations. The motion of the oscillator may either be periodic (bifurcating from a Hopf-type critical point), or quasi-periodic (bifurcating from a compound critical point). Furthermore...

متن کامل

Stability of Turing patterns in the Brusselator model.

The selection and competition of Turing patterns in the Brusselator model are reviewed. The stability of stripes and hexagons towards spatial perturbations is studied using the amplitude equation formalism. For hexagonal patterns these equations include both linear and nonpotential spatial terms enabling distorted solutions. The latter modify substantially the stability diagrams and select patt...

متن کامل

Refined stability thresholds for localized spot patterns for the Brusselator model in R

In the singular perturbation limit ǫ → 0, we analyze the linear stability of multi-spot patterns on a bounded 2-D domain, with Neumann boundary conditions, as well as periodic patterns of spots centered at the lattice points of a Bravais lattice in R, for the Brusselator reaction-diffusion model vt = ǫ ∆v + ǫ − v + fuv , τut = D∆u+ 1 ǫ ( v − uv ) , where the parameters satisfy 0 < f < 1, τ > 0,...

متن کامل

Stability diagram for the forced Kuramoto model.

We analyze the periodically forced Kuramoto model. This system consists of an infinite population of phase oscillators with random intrinsic frequencies, global sinusoidal coupling, and external sinusoidal forcing. It represents an idealization of many phenomena in physics, chemistry, and biology in which mutual synchronization competes with forced synchronization. In other words, the oscillato...

متن کامل

Mesa-type patterns in the one-dimensional Brusselator and their stability

The Brusselator is a generic reaction-diffusion model for a tri-molecular chemical reaction. We consider the case when the input and output reactions are slow. In this limit, we show the existence of K-periodic, spatially bi-stable structures, mesas, and study their stability. Using singular perturbation techniques, we find a threshold for the stability of K mesas. This threshold occurs in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The European Physical Journal Special Topics

سال: 2017

ISSN: 1951-6355,1951-6401

DOI: 10.1140/epjst/e2017-70020-x